Ir arriba
Información del Working Paper

A big-data approach to assess transport poverty: a case study of Madrid

M. Pérez-Bravo, J.C. Romero, A.F. Rodríguez Matas, P. Linares

Resumen:

Transport poverty, a multifaceted issue, has garnered increasing attention in recent years. This study employs anonymized mobile phone data and GIS techniques to analyze commuting patterns, economic burdens, and spatial distribution of transport poverty. By integrating data from various sources, including mobile phone records and income statistics, the study provides insights into the relationship between transport accessibility, income levels, and social inclusion. This methodology has been used to examine a case study in Madrid's economic area. The findings underscore the importance of accessibility indicators in understanding and addressing transport poverty. Through this bottom-up data processing approach, the study demonstrates the utility of big data analytics in informing evidence-based policy interventions to promote equitable access to transportation services.


Resumen divulgativo:

Este estudio propone una metodología basada en big data que emplea datos móviles y SIG para examinar la pobreza en el transporte. El análisis del caso de estudio en Madrid subraya la relevancia de los indicadores de accesibilidad.


Palabras clave: Transport poverty; Energy poverty; Big data; Indicators; Transport affordability; Transport accessibility.


Fecha de Registro: 16/04/2024

IIT-24-111WP


pdf Solicitar el artículo completo a los autores